100 research outputs found

    Volterra-assisted Optical Phase Conjugation: a Hybrid Optical-Digital Scheme For Fiber Nonlinearity Compensation

    Get PDF
    Mitigation of optical fiber nonlinearity is an active research field in the area of optical communications, due to the resulting marked improvement in transmission performance. Following the resurgence of optical coherent detection, digital nonlinearity compensation (NLC) schemes such as digital backpropagation (DBP) and Volterra equalization have received much attention. Alternatively, optical NLC, and specifically optical phase conjugation (OPC), has been proposed to relax the digital signal processing complexity. In this work, a novel hybrid optical-digital NLC scheme combining OPC and a Volterra equalizer is proposed, termed Volterra-Assisted OPC (VAO). It has a twofold advantage: it overcomes the OPC limitation in asymmetric links and substantially enhances the performance of Volterra equalizers. The proposed scheme is shown to outperform both OPC and Volterra equalization alone by up to 4.2 dB in a 1000 km EDFA-amplified fiber link. Moreover, VAO is also demonstrated to be very robust when applied to long-transmission distances, with a 2.5 dB gain over OPC-only systems at 3000 km. VAO combines the advantages of both optical and digital NLC offering a promising trade-off between performance and complexity for future high-speed optical communication systems

    Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

    Get PDF
    For the efficient compensation of fiber nonlinearity, one of the guiding principles appears to be: fewer steps are better and more efficient. We challenge this assumption and show that carefully designed multi-step approaches can lead to better performance-complexity trade-offs than their few-step counterparts.Comment: 4 pages, 3 figures, This is a preprint of a paper submitted to the 2019 European Conference on Optical Communicatio

    Achievable information rates of nonbinary codes for optical fiber transmission

    Get PDF
    Achievable information rates (AIRs) are calculated for optical fiber systems employing soft-decision and hard-decision nonbinary codes. We show that, despite the lower decoding complexity, hard-decision AIRs approach soft-decision AIRs for high spectral efficiencies and long transmission distances

    Low-Complexity Soft-Decision Detection for Combating DFE Burst Errors in IM/DD Links

    Full text link
    The deployment of non-binary pulse amplitude modulation (PAM) and soft decision (SD)-forward error correction (FEC) in future intensity-modulation (IM)/direct-detection (DD) links is inevitable. However, high-speed IM/DD links suffer from inter-symbol interference (ISI) due to bandwidth-limited hardware. Traditional approaches to mitigate the effects of ISI are filters and trellis-based algorithms targeting symbol-wise maximum a posteriori (MAP) detection. The former approach includes decision-feedback equalizer (DFE), and the latter includes Max-Log-MAP (MLM) and soft-output Viterbi algorithm (SOVA). Although DFE is easy to implement, it introduces error propagation. Such burst errors distort the log-likelihood ratios (LLRs) required by SD-FEC, causing performance degradation. On the other hand, MLM and SOVA provide near-optimum performance, but their complexity is very high for high-order PAM. In this paper, we consider a one-tap partial response channel model, which is relevant for high-speed IM/DD links. We propose to combine DFE with either MLM or SOVA in a low-complexity architecture. The key idea is to allow MLM or SOVA to detect only 3 typical DFE symbol errors, and use the detected error information to generate LLRs in a modified demapper. The proposed structure enables a tradeoff between complexity and performance: (i) the complexity of MLM or SOVA is reduced and (ii) the decoding penalty due to error propagation is mitigated. Compared to SOVA detection, the proposed scheme can achieve a significant complexity reduction of up to 94% for PAM-8 transmission. Simulation and experimental results show that the resulting SNR loss is roughly 0.3 to 0.4 dB for PAM-4, and becomes marginal 0.18 dB for PAM-8.Comment: This manuscript has been submitted to JL

    A Capacity Region Outer Bound for the Two-User Perturbative Nonlinear Fiber Optical Channel

    Get PDF
    We study a nonlinear fiber optical channel impaired by cross-phase modulation and dispersion from the viewpoint of an interference channel. We characterize an outer bound on the capacity region of simultaneously achievable rate pairs, assuming a two-user perturbative channel model.Comment: Incorrect Proposition 1 was remove

    Frequency Logarithmic Perturbation on the Group-Velocity Dispersion Parameter with Applications to Passive Optical Networks

    Get PDF
    Signal propagation in an optical fiber can be described by the nonlinear Schr\"odinger equation (NLSE). The NLSE has no known closed-form solution, mostly due to the interaction of dispersion and nonlinearities. In this paper, we present a novel closed-form approximate model for the nonlinear optical channel, with applications to passive optical networks. The proposed model is derived using logarithmic perturbation in the frequency domain on the group-velocity dispersion (GVD) parameter of the NLSE. The model can be seen as an improvement of the recently proposed regular perturbation (RP) on the GVD parameter. RP and logarithmic perturbation (LP) on the nonlinear coefficient have already been studied in the literature, and are hereby compared with RP on the GVD parameter and the proposed LP model. As an application of the model, we focus on passive optical networks. For a 20 km PON at 10 Gbaud, the proposed model improves upon LP on the nonlinear coefficient by 1.5 dB. For the same system, a detector based on the proposed LP model reduces the uncoded bit-error-rate by up to 5.4 times at the same input power or reduces the input power by 0.4 dB at the same information rate.Comment: 11 pages, 9 figures, 2 table

    Extending fibre nonlinear interference power modelling to account for general dual-polarisation 4D modulation formats

    Full text link
    In optical communications, four-dimensional (4D) modulation formats encode information onto the quadrature components of two arbitrary orthogonal states of polarisation of the optical field. These formats have recently regained attention due their potential power efficiency, nonlinearity tolerance, and ultimately to their still unexplored shaping gains. As in the fibre-optic channel the shaping gain is closely related to the nonlinearity tolerance of a given modulation format, predicting the effect of nonlinearity is key to effectively optimise the transmitted constellation. Many analytical models available in the optical communication literature allow, within a first-order perturbation framework, the computation of the average power of the nonlinear interference (NLI) accumulated in coherent fibre-optic transmission systems. However, all current models only operate under the assumption of a transmitted polarisation-multiplexed, two-dimensional (PM-2D) modulation format. PM-2D formats represent a limited subset of the possible dual-polarisation 4D formats, namely, only those where data transmitted on each polarisation channel are mutually independent and identically distributed. This document presents a step-by-step mathematical derivation of the extension of existing NLI models to the class of arbitrary dual-polarisation 4D modulation formats. In particular, the methodology adopted follows the one of the popular enhanced Gaussian noise model, albeit dropping most assumptions on the geometry and statistic of the transmitted 4D modulation format. The resulting expressions show that, whilst in the PM-2D case the NLI power depends only on different statistical high-order moments of each polarisation component, for a general 4D constellation also several others cross-polarisation correlations need to be taken into account.Comment: Introduction section and more references were added. Lemma 6 and Theorem 7 replace the old Theorems 6 and 7. Typos were fixed in Table XIII. Submitted in a different format and nearly identical content to MDPI Entrop

    Improved Decoding of Staircase Codes: The Soft-aided Bit-marking (SABM) Algorithm

    Get PDF
    Staircase codes (SCCs) are typically decoded using iterative bounded-distance decoding (BDD) and hard decisions. In this paper, a novel decoding algorithm is proposed, which partially uses soft information from the channel. The proposed algorithm is based on marking certain number of highly reliable and highly unreliable bits. These marked bits are used to improve the miscorrection-detection capability of the SCC decoder and the error-correcting capability of BDD. For SCCs with 22-error-correcting Bose-Chaudhuri-Hocquenghem component codes, our algorithm improves upon standard SCC decoding by up to 0.300.30~dB at a bit-error rate (BER) of 10−710^{-7}. The proposed algorithm is shown to achieve almost half of the gain achievable by an idealized decoder with this structure. A complexity analysis based on the number of additional calls to the component BDD decoder shows that the relative complexity increase is only around 4%4\% at a BER of 10−410^{-4}. This additional complexity is shown to decrease as the channel quality improves. Our algorithm is also extended (with minor modifications) to product codes. The simulation results show that in this case, the algorithm offers gains of up to 0.440.44~dB at a BER of 10−810^{-8}.Comment: 10 pages, 12 figure
    • …
    corecore